If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+2x-90=0
a = 5; b = 2; c = -90;
Δ = b2-4ac
Δ = 22-4·5·(-90)
Δ = 1804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1804}=\sqrt{4*451}=\sqrt{4}*\sqrt{451}=2\sqrt{451}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{451}}{2*5}=\frac{-2-2\sqrt{451}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{451}}{2*5}=\frac{-2+2\sqrt{451}}{10} $
| 6x=9=-33 | | 13x-9x=32 | | (4x-7)÷3=(13x+2)÷12 | | x+42-5x=23 | | 12x-1/2=8 | | -15+8h=-19+6h | | 15-3=8x+4 | | 5^x+1=126 | | x+51/2=-32/3 | | 4•n+3=5+n | | 7d–4d+4d+9=6d | | 5+7q=-5+8q | | 17x-1+5x=23 | | x+6=-3x-22 | | -2c-12=-5+c | | 1/3(4b+9)=2/3b-5 | | 10+2z=-3z-7-8 | | 2q+7=2 | | b/3=2/1 | | 32^x+2=2^7+14 | | b3= 21 | | 3x/2+4=13 | | 3.6=1/45*3.6e | | n√16=2 | | b/3= 2/1 | | -6-2t=-4t+4 | | 10(9z+4)=-5(7z-25) | | 2x/5=3,2 | | (3x+8)+(4x-5)=180 | | 20–2p=4 | | -9s+8=-8s | | (4x+3)=3x |